Using a biologically annotated library to analyze the anticancer mechanism of serine palmitoyl transferase (SPT) inhibitors

نویسندگان

  • Osamu Sano
  • Ken‐ichi Kazetani
  • Ryutaro Adachi
  • Osamu Kurasawa
  • Tomohiro Kawamoto
  • Hidehisa Iwata
چکیده

Mechanistic understanding is crucial to anticancer drug discovery. Here, we reveal that inhibition of serine palmitoyl transferase (SPT), the rate-limiting enzyme in sphingolipid synthesis, induced death in a lung cancer cell line via a necrosis-dependent pathway. To elucidate the mechanism of cell death induced by SPT inhibition, a biologically annotated library of diverse compounds was screened with an SPT inhibitor. This analysis identified suppressors of SPT inhibitor-mediated cell death. Further analysis using hit compounds from this screening revealed that SPT inhibitors induce COX-2 expression, leading to necrosis-dependent cell death. SPT inhibitors might therefore represent novel candidates for cancer therapy via necrosis pathway regulation. Our data illustrate that compound combination screening of biologically annotated libraries could be used for mechanistic elucidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serine-palmitoyl transferase activity in cultured human keratinocytes.

Sphingolipids comprise approximately 25% of the stratum corneum lipids and are considered critical constituents of the epidermal permeability barrier. Whether sphingoid base structures are synthesized in the epidermis or whether they are derived from circulating or dermal sources is not known. We report here the initial characterization of serine-palmitoyl transferase (EC 2.3.1.50; SPT), the ra...

متن کامل

Application of An Improved HPLC-FL Method to Screen Serine Palmitoyl Transferase Inhibitors.

In this work, we reported the application and validation of an improved high-performance liquid chromatography method coupled with a fluorimetric detector (HPLC-FL) to screen the activity of two heterocyclic derivatives reported as serine palmitoyl transferase (SPT) inhibitors. The analytical conditions were optimized in terms of the derivatization procedure, chromatographic condition, extracti...

متن کامل

Magnesium deficiency upregulates serine palmitoyl transferase (SPT 1 and SPT 2) in cardiovascular tissues: relationship to serum ionized Mg and cytochrome c.

The present work tested the hypothesis that a short-term dietary deficiency of magnesium (Mg) (21 days) in rats would result in the upregulation of the two major subunits of serine palmitoyl-CoA-transferase, serine palmitoyl transferase (SPT 1) and SPT 2 (the rate-limiting enzymes responsible for the de novo biosynthesis of ceramides) in left ventricular, right ventricular, and atrial heart mus...

متن کامل

Intracellular APP Domain Regulates Serine-Palmitoyl-CoA Transferase Expression and Is Affected in Alzheimer's Disease

Lipids play an important role as risk or protective factors in Alzheimer's disease (AD), a disease biochemically characterized by the accumulation of amyloid beta peptides (Aβ), released by proteolytic processing of the amyloid precursor protein (APP). Changes in sphingolipid metabolism have been associated to the development of AD. The key enzyme in sphingolipid de novo synthesis is serine-pal...

متن کامل

Modulating serine palmitoyl transferase (SPT) expression and activity unveils a crucial role in lipid-induced insulin resistance in rat skeletal muscle cells.

Saturated fatty acids, such as palmitate, promote accumulation of ceramide, which impairs activation and signalling of PKB (protein kinase B; also known as Akt) to important end points such as glucose transport. SPT (serine palmitoyl transferase) is a key enzyme regulating ceramide synthesis from palmitate and represents a potential molecular target in curbing lipid-induced insulin resistance. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017